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Introduction 

The number and variety of products that include some form of digital signal processing has 
grown dramatically over the last ten years. Digital signal processing has become a key component 
in many consumer, communications, medical, and indus trial products. These products use a 
variety of hardware approaches to implement the required signal processing, ranging from off-
the-shelf general-purpose microprocessors (GPPs) to fixed-function custom integrated circuits 
(ASICs). Off-the-shelf programmable processors are often the preferred choice because they 
avoid the need for designing a custom chip and because they can be reprogrammed in the field, 
allowing product upgrades or fixes. They are often more cost-effective (and less risky) than 
custom chips, particularly for low- and moderate-volume applications, where the development 
cost of a custom ASIC may be prohibitive. Digital signal processors (or DSPs) are 
microprocessors specially designed for signal processing applications. In the 1980’s and early 
1990’s, typical DSPs provided signal processing performance that was significantly better than 
what was achievable with typical GPPs.  Since then, the performance gap between DSPs and 
GPPs has narrowed; today many GPPs are capable of handling serious digital signal processing 
applications.  

While both GPPs and DSPs provide sufficient processing power for many signa l processing 
applications, each type of processor brings with it important strengths and weaknesses that can 
have an enormous influence on how effectively the processor meets the needs of a particular 
application. In this article, we examine the key attributes that distinguish DSP algorithms and 
applications and show how these attributes have led to the architectural specialization found in 
DSP processors. We then investigate how GPP and DSP architectures compare with regard to 
these key DSP algorithm attributes. In addition, we examine the architectural techniques 
employed in high-performance GPPs and DSPs, which have led to rapid gains in signal 
processing performance in both classes of processor.  

DSP and GPP Architecture Fundamentals 

Before we examine the key attributes of digital signal processing algorithms, we’ll broadly 
classify the processors we will be discussing. We’ve already introduced the terms GPP and DSP, 
but we would like to refine our definitions of these two classes of processor to include both 
“basic” and “high-performance” variants of each class. 
 
The most common GPPs are microcontrollers (or MCUs). Microcontrollers are designed for cost 
sensitive embedded applications and are available in 4-, 8-, 16-, and 32-bit varieties.  As a group, 
MCUs account for the vast majority of all microprocessors sold. Our focus will be on 32-bit 



MCUs, such as ARM’s ARM7 architecture. We will refer to this type of MCU as a “basic GPP.”  
The highest performance GPPs are central processing units (or CPUs) designed for personal 
computers, work stations, network servers, and the like, such as Intel’s Pentium family and 
Motorola’s PowerPC family. We will refer to this class of GPP as a “high-performance GPP.” 
 
“Basic DSPs” are architecturally similar to the first DSPs developed in the 1980s.  Basic DSPs 
feature highly specialized architectures designed to perform very specific signal processing tasks 
efficiently. Akin to MCUs, basic DSPs account for majority of DSPs sold today.  Their 
combination of low cost, good energy efficiency, and in many cases adequate signal processing 
performance makes them the ideal choice for a broad range of consumer products.  Texas 
Instruments’ TMS320C54x family of DSP processors typifies the basic DSP.  “High-performance 
DSPs are generally used in relatively cost-insensitive applications where very high signal 
processing performance is required, such as medical equipment, military applications, and 
communications infrastructure.  Analog Devices’ TigerSHARC typifies the high-performance 
DSP. 
  
Basic DSPs and basic GPPs are in many respects quite similar; for example, they typically 
execute a single instruction per clock cycle, have limited amounts of on-chip memory, and 
operate at lower clock rates, generally in the range of 75-160 MHz. But beyond these similarities, 
there are vast differences: basic DSPs use compound, multi-operation instructions, whereas basic 
GPPs typically use simple, single -operation RISC instructions. Generally, several RISC 
instructions are required to perform the work of one compound DSP instruction, and this 
ultimately translates into a performance advantage for basic DSPs.  

In the higher cost and performance range, DSPs and GPPs employ various techniques to increase 
both the clock rate and the amount of work achieved per clock cycle. Thus, increased 
performance is a function of both increased parallelism and increased clock rates. Later, we will 
consider many of the architectural characteristics of high-performance DSPs and GPPs, and how 
these classes of processors compare both to each other and to their more basic counterparts.  

Signal Processing Algorithms Mold DSP Architectures 

From the outset, DSP processor architectures have been molded by digital signal processing  
algorithms. For nearly every feature found in a DSP processor, there are signal processing algo-
rithms whose computation is eased in some way by inclusion of this feature. Therefore, perhaps 
the best way to understand DSP architectures is to first examine typical signal processing 
algorithms and identify how their computational requirements have influenced the architectures 
of DSP processors. Initially, we’ll limit our scope to basic DSPs and GPPs; later, we’ll broaden 
the scope to include high-performance DSPs and GPPs. As a case study, we will consider one of 
the most common signal processing algorithms, the finite impulse response (FIR) filter.  

Fast Multipliers  

The FIR filter is mathematically expressed as y[n]= ][][
1

0

knxkh
N

k

−∑
−

=

, where x[n] is a vector of 

input data and h[n] is a vector of filter coefficients.   To produce an output sample, a set of recent 
input samples is multiplied by a set of constant coefficients.  Hence, the main component of the 
FIR filter algorithm is a dot product: a series of multiplications where the multiplication products 



are summed, or “accumulated.” These operations are not unique to the FIR filter algorithm; in 
fact, multiplication (often combined with accumulation of products) is one of the most common 
operations performed in signal processing—convolution, infinite impulse response (IIR) filtering, 
and Fourier transforms all also involve heavy use of multiply-accumulate (or “MAC”) operations.  

Early microprocessors implemented multiplications via a series of shift and add operations, each 
of which consumed one or more clock cycles. In 1982, however, Texas Instruments (TI) 
introduced the first commercially successful “DSP processor,” the TMS32010, which incorpo-
rated specialized hardware to enable it to compute a multiplication in a single clock cycle. As 
might be expected, faster multiplication hardware yields faster performance in many digital signal 
processing algorithms. Today, hardware multipliers are standard in both basic GPPs and DSPs. 
The multiplier in a basic DSP is usually combined with an adder to facilitate single -cycle 
multiply-accumulate operations; the resulting hardware is referred to as a “MAC unit.”   

Multiple Execution Units 

Digital signal processing applications typically have very high computational requirements in 
comparison to other types of processor applications.  This is because they generally execute 
math-intensive signal processing algorithms (such as FIR filtering) in real time on signals 
sampled at data rates of 10-100 kHz or higher. Hence, basic DSP processors often include several 
independent execution units that are capable of operating in parallel—for example, in addition to 
the MAC unit, they typically contain an arithmetic-logic unit (ALU), shifter, and address 
generation unit. Basic GPPs in contrast, are generally not capable of parallel operations.  

Efficient Memory Accesses 

Executing MAC operations at a rate of one MAC per clock cycle requires more than just a single -
cycle MAC unit. It also requires the ability to fetch the MAC instruction and the operands from 
memory in a single cycle. Hence, good digital signal processing performance requires high 
memory bandwidth—higher than is typically supported on a basic GPPs, which usually rely on a 
single-bus connection to memory and can only make one access per clock cycle. To address the 
need for increased memory bandwidth, designers of early basic DSP processors developed 
memory architectures that could support multiple memory accesses per cycle. The most common 
approach (which is still used in many DSP architectures) was to use two or more separate banks 
of memory, each of which was accessed by its own bus and could be read or written dur ing every 
clock cycle. Often, instructions were stored in one memory bank while data was stored in another. 
With this arrangement, the processor could fetch both an instruction and a data operand in parallel 
in every cycle. Since many digital signal processing algorithms (such as FIR filters) consume two 
data operands per instruction (e.g., a data sample and a coefficient), some architects have adopted 
an extension to this idea: divide data memory into two separate banks (e.g., X data and Y data), 
each allowing one access per instruction cycle—thus enabling the processor to execute a MAC in 
a single cycle. In contrast, a basic GPP requires one instruction cycle per memory access and per 
arithmetic operation. Thus in the context of sustained sequential MAC operations, a basic GPP 
typically requires several instruction cycles to complete each MAC operation—even if a single -
cycle multiplier is available.  

Basic DSPs often further support high memory bandwidth requirements via dedicated hardware 
for calculating memory addresses. These address generation units operate in parallel with the 
DSP processor’s main execution units, enabling the processor to access data at new locations in 
memory (for example, stepping through a vector of coefficients) without pausing to calculate the 
new address. In contrast, basic GPPs do not provide separate address generation units and must 
rely on the main arithmetic logic unit (ALU) to perform address calculations. This typically 



requires one instruction cycle per address update, widening the performance gap between basic 
DSPs and GPPs in the context of tasks such as sustained sequential MAC operations.    

Memory accesses in digital signal processing algorithms tend to exhibit very predictable patterns; 
for example, for each sample in an FIR filter, the filter coefficient vector is accessed sequentially 
from start to finish; when processing the next input sample, accesses start over from the 
beginning of the coefficient vector. (This is in contrast to other types of computing tasks, such as 
database processing, where accesses to memory are less predictable.) Address generation units in 
basic DSP processors take advantage of this predictability by supporting specialized addressing 
modes that enable the processor to access data efficiently in patterns commonly found in digital 
signal processing algorithms. The most common addressing mode is register-indirect addressing 
with post-increment, which is used to automatically increment the address pointer for algorithms 
where repetitive computations are performed on a series of data stored sequentially in memory. 
Without this feature, the processor would spend instruction cycles incrementing the address 
pointer, as is the case with basic GPPs. Many DSP processors also support “circular addressing,” 
which allows the processor to access a block of data sequentially and then automatically wrap 
around to the beginning address—exactly the pattern used to access coefficients in FIR filtering, 
for example. Circular addressing is also very helpful in implementing first-in, first-out buffers, 
commonly used for I/O and for FIR filter input data delay lines. Another specialized DSP 
addressing mode is bit-reversed addressing, which is used in certain fast Fourier transform (FFT) 
implementations.  Basic GPPs do not support specialized DSP addressing modes like circular or 
bit-reversed addressing.  These addressing modes, if needed, must be implemented in software, or 
alternative algorithms must be selected that do not require these addressing modes. 

Data Format 

Most DSP processors use a fixed-point numeric data type instead of the floating-point format 
most commonly used in scientific applications. In a fixed-point format, the binary point 
(analogous to the decimal point in base 10 math) is located at a fixed location in the data word. In 
contrast, in floating-point formats numbers are expressed using an exponent and a mantissa; the 
binary point essentially “floats” based on the value of the exponent. Floating-point formats allow 
a much wider range of values to be represented and virtually eliminate the risk of numeric 
overflow in many applications.  

Digital signal processing applications typically must pay careful attention to numeric fidelity 
(e.g., avoiding overflow). Since numeric fidelity is far more easily maintained using a floating-
point format, it may seem surprising that most DSP processors use a fixed-point format. In many 
applications, however, DSP processors face additional constraints: they must be inexpensive and 
provide good energy efficiency. At comparable speeds, fixed-point processors tend to be cheaper 
and less power-hungry than floating-point processors because floating-point formats require more 
complex hardware to implement so DSP processors predominately use a fixed-point numeric 
format.  Basic GPPs also generally use fixed-point numeric formats, for many of the same 
reasons that DSPs do. Sensitivity to cost and energy consumption also influences the data word 
width used in DSP processors. DSP processors tend to support the shortest data word that will 
provide adequate precision in the target applications. Most fixed-point DSP processors support 
16-bit data words because 16-bit width is sufficient for many digital signal processing 
applications. (A few fixed-point DSP processors support 20, 24, or 32 bits to enable higher 
precision in some applications, such as high-fidelity audio processing.)  Basic GPPs generally 
support 32-bit fixed-point data, offering a better match for applications requiring higher precision 
than the DSPs supporting 16-bit format.  



To ensure adequate signal quality while using fixed-point data, DSP processors typically include 
specialized hardware to help programmers maintain numeric fidelity throughout a series of 
computations. For example, most DSP processors include one or more “accumulator” regis ters to 
hold the results of summing several multiplication products. Accumulator registers are typically 
wider than other registers; the extra bits, called “guard bits,” extend the range of values that can 
be represented and thus helps avoid overflow. In addition, DSP processors usually include good 
support for saturation arithmetic, rounding, and shifting, all of which are useful for maintaining 
numeric fidelity. Basic GPPs, in contrast, usually have uniform register widths, i.e., they do not 
provide larger accumulator style registers, and do not support saturation arithmetic or rounding.  
To some extent, however, the larger native data word size typical of GPPs (32 bits vs. 16 bits for 
DSPs) reduces the need for saturation, scaling, and rounding in the first place.  

Zero-Overhead Looping 

Digital signal processing algorithms typically spend the vast majority of their processing time in 
relatively small sections of software that are executed repeatedly; i.e., in loops. Hence, most DSP 
processors provide special support for efficient looping. Often, a special loop or repeat instruction 
is provided which allows the programmer to implement a for-next loop without expending any 
clock cycles for updating and testing the loop counter or branching back to the top of the loop. 
This feature is often referred to as “zero-overhead looping.”  In contrast, basic GPPs do not 
provide special loop oriented operations, beyond normal conditional branch instructions.   

On-chip Integration 

To gain low-cost, high-performance input and output, most DSP processors incorporate spe-
cialized on-chip peripherals, such as buffered synchronous serial ports, and streamlined I/O 
handling mechanisms, such as low-overhead interrupts and direct memory access (DMA).  This 
allows data transfers to proceed with little or no intervention from the processor’s computational 
unit. Basic GPPs in contrast, typically incorporate more generalized peripherals, like universal 
asynchronous serial interfaces and often do not include a DMA controller. 

Specialized Instruction Sets  

DSP processor instruction sets have traditionally been designed with two goals in mind. The first 
is to make maximum use of the processor's underlying hardware, thus increasing efficiency. The 
second goal is to minimize the amount of memory space required to store DSP programs, since 
digital signal processing applications are often quite cost-sensitive and the cost of memory 
contributes substantially to overall chip and/or system cost. To accomplish the first goal, basic 
DSP processor instruction sets generally allow the programmer to specify several parallel 
operations in a single instruction, typically including one or two data fetches from memory (along 
with address pointer updates) in parallel with the main arithmetic operation. With the second goal 
in mind, instructions are kept short (thus using less program memory) by restricting which 
registers can be used with which operations and restricting which operations can be combined in 
an instruction. To further reduce the number of bits required to encode instructions, DSP 
processors often have only a small number of registers divided into special-purpose groups. DSP 
processors may use mode bits to control some features of processor operation (for example, 
rounding or saturation) rather than encoding this information as part of the instructions.  

The overall result of this approach is that basic DSP processors tend to have highly specialized, 
complicated, and irregular instruction sets. Combined with multiple memory spaces, multiple 
buses, and highly specialized arithmetic and addressing hardware, these instruction sets make 
basic DSP architectures very poor compiler targets.  While a compiler can certainly take C source 



code and generate assembly code for a basic DSP, this compiler-generated code is usually far less 
efficient than hand written assembly code. Digital signal processing applications typically have 
very high computational demands coupled with strict cost constraints, making efficient code 
essential. For these reasons, when selecting a processor, programmers often need to consider the 
quality of compiler-generated code and the ease or difficulty of writing key routines in assembly 
language.    

Basic GPPs, with their simple single -operation RISC instructions, regular register sets, and 
simpler memory models are excellent compiler targets. Programmers who write software for 
basic GPPs typically don't have to worry much about the ease of use of the processor's instruction 
set (as they tend to be relatively benign), so programmers generally develop applications in a 
high-level language, such as C or C++. The main motivation to hand write assembly for a basic 
GPP is to gain access to instructions the compiler does not support, although this scenario is rare 
in the context of basic GPPs.  

High Performance Processors 

Enhancements to Basic Architectures  

Processor architects who want to improve performance beyond the gains afforded by faster clock 
speeds and must find a way to get more useful work out of every clock cycle. One approach taken 
with DSPs is to extend their architectures by adding parallel execution units, typically a second 
multiplier and adder. These hardware enhancements are combined with an extended instruction 
set that takes advantage of the additional hardware by allowing more operations to be encoded in 
a single instruction and executed in parallel. We refer to this type of processor as an “enhanced 
basic DSP processor,” because it is based on the basic DSP processor architectural style rather 
than being an entirely new approach. With this increased parallelism, enhanced basic DSP pro-
cessors can execute significantly more work per clock cycle—for example, two MACs per cycle 
instead of one. Enhanced basic DSP processors typically have wider data buses to allow them to 
retrieve more data words per clock cycle to keep the additional exe cution units fed. They may 
also use wider instruction words to accommodate specification of additional parallel operations 
within a single instruction. Increases in cost and power consumption due to the additional 
hardware and architectural complexity are largely offset by increased performance (and, in some 
cases, by the use of more advanced fabrication processes), allowing these processors to maintain 
cost-performance and energy consumption similar to those of basic DSPs.  

Although basic DSPs provide superior signal processing performance compared to basic GPPs, 
many applications require a mixture of control-oriented software and digital signal processing 
software. An example is the digital cellular phone, which must implement both supervisory tasks 
and voice-processing tasks. In general, basic GPPs provide good performance and code density in 
controller tasks and poor performance and code density in digital signal processing tasks. Hence, 
basic GPPs can be an attractive option for applications that combine some signal processing tasks 
with extensive control-oriented tasks. In an effort to provide a “best of both worlds” solution, 
vendors such as Hitachi, ARM, and Intel have created DSP-enhanced versions of their basic 
GPPs. Each vendor has employed a different approach to adding digital signal processing 
functionality to its existing GPP designs, borrowing and adapting the architectural features com-
mon among basic DSP processors. Many of these DSP-enhanced GPPs achieve signal processing 
performance that is comparable to that of basic DSP processors while maintaining many positive 
attributes of basic GPPs, such as good performance on control-oriented tasks.  DSP-enhanced 
GPPs can be as an alternative to using a basic DSP in combination with a basic GPP.  



High-Performance DSPs  

Enhanced basic DSP processors provide improved performance by allowing more operations to 
be encoded in every instruction, but because they follow the trend of using specialized arithmetic 
and addressing hardware along with complex, compound instructions, they suffer from some of 
the same problems as basic DSPs: they are difficult to program in assembly language and they are 
unfriendly compiler targets. With the goals of achieving high performance and creating 
architectures that lend themselves to the use of compilers, newer high-performance DSP 
processors use a “multi-issue” approach. Multi-issue processors achieve a high level of 
parallelism by issuing and executing instructions in parallel groups rather than one at a time. The 
advantage of the multi-issue approach is a processor with a significant increase in parallelism 
with a simpler, more regular architecture and instruction set that lends itself to efficient compiler 
code generation. 

TI was the first vendor to use a multi-issue approach in a mainstream commercial DSP processor. 
TI's VLIW (very long instruction word) TMS320C62x, introduced in 1996, was dramatically 
faster than other mainstream DSP processors available at the time. Other vendors have since 
followed suit, and now all of the major DSP processor vendors (TI, Analog Devices, and 
Motorola) employ multi-issue architectures for their latest high-performance processors.  
 
In a VLIW architecture, the assembly language programmer (or code-generation tool) specifies 
which instructions will be executed in parallel. Hence, instructions are grouped at the time the 
program is assembled, and the grouping does not change during program execution. VLIW 
architectures provide multiple execution units, each of which executes its own instruction. The 
TMS320C62x, for example, contains eight independent execution units. VLIW processors 
typically issue a maximum of between four and eight instructions per clock cycle, which are 
fetched and issued as part of one long super-instruction—hence the name “very long instruction 
word.”   

When a processor issues multiple instructions per cycle, it must be able to determine which 
execution unit will process each instruction. Traditionally, VLIW processors have used the 
position of each instruction within the super-instruction to determine to where the instruction will 
be routed. Newer VLIW architectures do not use positional super-instructions, however, and 
instead include routing information within each sub-instruction. This has the benefit of reducing 
program memory use, as super-instructions that use every execution slot have the burden of 
needing to explicitly encode NOP operations in unused execution slots.  In contrast to basic and 
enhanced basic DSPs, VLIW DSPs tend to use simpler instructions that typically encode one or 
two operations. These simpler instruc tions ease instruction decoding and execution, allowing 
VLIW DSPs to execute at higher clock rates than basic or enhanced basic DSP processors.  

Although their instructions typically encode only one or two operations, most current VLIW 
DSPs use wider instruction words than basic DSP processors—for example, 32 bits instead of 16. 
There are a number of reasons for using a wider instruction word. In VLIW architectures, a wide 
instruction word may be required in order to specify which functional unit will execute the 
instruction. Wider instructions allow the use of larger, more uniform register sets (rather than the 
small sets of specialized registers common among basic DSP processors), which in turn enables 
higher performance. Relatedly, the use of wide instructions allows a higher degree of consistency 
and regularity in the instruction set; the resulting instructions have few restrictions on register 
usage and addressing modes, making VLIW processors better compiler targets (and easier to 
program in assembly language). There are disadvantages, however, to using wide, simple 
instructions. Since each VLIW instruction is simpler than a basic DSP processor instruction, 



VLIW processors tend to require many more instructions to perform a given task. Combined with 
the typically wider instruction words than those on basic DSP processors, this characteristic 
results in relatively high program memory usage. High program memory usage, in turn, may 
result in higher chip or system cost because of the need for additional ROM or RAM. 
Furthermore, to support execution of multiple parallel instructions, VLIW processors must have 
sufficient instruction decoders, buses, registers, and memory bandwidth. VLIW processors 
typically use either wide buses or a large number of buses to access data memory and keep the 
multiple execution units fed with data. The added hardware tends to increase energy consumption 
and processor cost. 

Since they tend to use simple instructions, the architectures of VLIW DSP processors are in some 
ways more like a general-purpose processor than a highly specialized basic DSP architecture. 
VLIW DSP processors often omit some of the features that were, until recently, considered 
virtually part of the definition of a “DSP processor.” For example, VLIW DSPs do not typically 
include zero-overhead looping instructions; they require the processor to execute instructions to 
perform the operations associated with maintaining a loop. This does not necessarily result in a 
loss of performance, however, since VLIW processors are able to execute many instructions in 
parallel. The operations needed to maintain a loop, for example, can be executed in parallel with 
several arithmetic computations, achieving the same effect as if the processor had dedicated 
looping hardware operating in the background.  

High Performance GPPs  

Like high-performance DSPs, high-performance GPPs also employ multi-issue architectures that 
execute multiple instructions in parallel. Many of the multi-issue concepts discussed in the 
context of high-performance DSPs hold true for high-performance multi-issue GPPs. For 
example, both types of processors issue multiple independent instructions in parallel, both 
provide multiple execution units to execute the parallel instructions, and both are effective at 
improving performance compared to their single -issue counterparts. But high-performance GPPs, 
by and large, are not VLIW architectures, but rather are superscalar architectures.  The difference 
in the way these two types of architectures schedule instructions for parallel execution is 
important in the context of using them in real-time digital signal processing applications.  

Superscalar processors contain specialized hardware that determines at run-time which 
instructions will be executed in parallel based on inter-instruction data dependencies and resource 
contention. This shifts the burden of scheduling parallel instructions from the programmer or 
tools to the processor. An important benefit of the superscalar approach is the ability to maintain 
binary compatibility with previous generations of the same processor family. For example, some 
superscalar processors simply duplicate the execution units of an existing single -issue GPP or 
DSP processor, producing two execution paths, each one identical to the single execution path of 
the earlier single -issue processor. In the worst case, software written and compiled for the earlier 
single-issue processor runs on the new multi-issue processor using a single execution path, while 
the other path remains idle, resulting in performance similar to the original processor (assuming a 
similar clock rates and underlying microarchitectures). In the best case, the scheduling hardware 
can issue two instructions in paralle l in every instruction cycle, effectively doubling throughput, 
and potentially improving performance by a factor of two.  Superscalar processors typically issue 
and execute fewer instructions per cycle than VLIW processors—usually between two and four. 

A challenge for programmer using a superscalar processor is that superscalar processors may 
group the same set of instructions differently at different times in the program's execution; for 
example, it may group instructions one way the first time it executes a loop, then group them 



differently for subsequent iterations. Because superscalar processors dynamically schedule 
parallel operations, it may be difficult for the programmer to predict exactly how long a given 
segment of software will take to execute. The execution time may vary based on the particular 
data accessed, whether the processor is executing a loop for the first time or the third, or whether 
it has just finished processing an interrupt, for example. This uncertainty in execution times can 
pose a problem for digital signal processing software developers who need to guarantee that real-
time application constraints will be met in every case. Measuring the execution time on hardware 
doesn't solve the problem, since the execution time is often variable. Determining the worst-case 
timing requirements and using them to ensure that real-time deadlines are met is another 
approach, but this tends to leave much of the processor's speed untapped. Dynamic features also 
complicate software optimization. As a rule, DSP processors have traditionally avoided dynamic 
features (such as superscalar execution, dynamic caches, and dynamic branch prediction) for just 
these reasons. In general, high-performance multi-issue DSPs are VLIW architectures, whereas 
high-performance multi-issue GPPs are superscalar architectures.  This distinction isn’t arbitrary, 
but rather is driven by key requirements related to each class of processor: execution time 
predictability in DSPs and compatibility requirements in GPPs.  

Common Characteristics  

VLIW and superscalar processors often suffer from high energy consumption relative to their 
more basic single-issue counterparts; in general, multi-issue processors are designed with an 
emphasis on speed rather than energy efficiency. These processors often have more execution 
units active in parallel than single -issue processors, and they require wide on-chip buses and 
memory banks to accommodate multiple parallel instructions and to keep the multiple execution 
units supplied with data, all of which contribute to increased energy consumption. 

Because they typically have had high memory usage and energy consumption, VLIW and 
superscalar processors have historically mainly targeted applications which have very demanding 
computational requirements but are not very sensitive to cost or energy efficiency. For example, a 
VLIW processor might be used in a cellular base station, but not in a portable cellular phone. This 
trend, however, is changing, as portable devices increasingly require more computational power 
and processor vendors continually strive to produce energy efficient versions of their high-
performance architectures. For example, Motorola’s StarCore SC140-based VLIW MSC8101 has 
sufficiently low energy consumption to enable its use in portable products. 

SIMD 

High-performance DSPs and GPPs often further increase the amount of parallelism available by 
incorporating single -instruction, multiple -data (SIMD) operations. SIMD is not a class of 
architecture itself, but is instead an architectural technique that can be used within any of the 
classes of architectures we have described. SIMD improves performance on some algorithms by 
allowing the processor to execute multiple instances of the same operation in parallel using 
different data. For example, a SIMD multiplication instruction could perform two or more 
multiplications on different sets of input operands in parallel in a single clock cycle. This 
technique can greatly increase the rate of computation for some vector operations that are heavily 
used in signal processing applications. In the case where SIMD is included in a multi-issue 
architecture, the resulting parallelism can be quite high. For example, if two multiplication 
instructions can be issued per instruction cycle and these two instructions are each four-way 
SIMD instructions, the result is eight independent multiplications per clock cycle. 



High-performance GPPs such as Pentiums and PowerPCs have been enhanced to increase signal 
processing performance via the addition of SIMD-based instruction-set extensions, such as MMX 
and SSE for the Pentium and AltiVec for the PowerPC. This approach is good for GPPs, which 
typically have wide resources (buses, registers, ALUs), that can be treated as multiple smaller 
resources to increase parallelism. For example, Motorola’s PowerPC 74xx with AltiVec has very 
powerful SIMD capabilities; its wide, 128-bit vector registers are logically partitioned into four 
32-bit, eight 16-bit, or sixteen 8-bit elements. The PowerPC 74xx can perform eight 16-bit 
multiplications per cycle.  Using this approach, high-performance GPPs are often able to achieve 
performance on DSP algorithms that is better than that of even the fastest DSP processors. This 
surpris ing result is partly due to the effectiveness of SIMD, but also because high-performance 
GPPs operate at extremely high clock speeds in comparison to DSP processors; they typically 
operate at upwards of 2500 MHz or more, while the fastest DSP processors are typically in the 
600-1000 MHz range.  

On DSP processors with SIMD capabilities, the underly ing hardware that supports SIMD 
operations varies widely. Analog Devices, for example, modified its basic floating-point DSP 
architecture, the ADSP-2106x, by adding a second set of execution units that exactly  duplicate 
the original set. The resulting architecture, the ADSP-2116x, has two sets of execution units that 
each include a MAC unit, ALU, and shifter, and each has its own set of operand registers. The 
augmented architecture can issue a single instruction and execute it in parallel in both sets of 
execution units using different data—effectively doubling performance in some algorithms.  

Alternatively, some DSP processors split their execution units into multiple sub-units, similar to 
high-performance GPPs. Perhaps the most extensive SIMD capabilities in a DSP processor to 
date are found in Analog Devices’ TigerSHARC processor. TigerSHARC is a VLIW architecture, 
and combines the two types of SIMD: one instruction can control execution of the processor's two 
sets of execution units, and an instruction can specify a split-execution-unit (e.g., split-ALU or 
split-MAC) operation that will be executed in each set. Using this hierarchical SIMD capability, 
TigerSHARC can execute eight 16-bit multiplications per cycle, like the PowerPC 74xx.  

Making effective use of processors' SIMD capabilities can require significant effort on the part of 
the programmer. Programmers often must arrange data in memory so that SIMD processing can 
proceed at full speed (e.g., arranging data so that it can be retrieved in groups of two, four, or 
eight operands at a time) and they may also have to re-organize algorithms, or write additional 
code that reorganizes data in registers to make maximum use of the processor's resources. SIMD 
is only effective in algorithms that can process data in parallel; for algorithms that are inherently 
serial (that is, algorithms that tend to use the result of one operation as an input to the next 
operation), SIMD is generally not of use. 

Development Support 

Development support refers to the software and hardware infrastructure that that is available to 
assist users in developing products based on the processor.  This typically includes software 
development tools, software component libraries, hardware emulators, and evaluation boards.  
Development support varies significantly between GPPs and DSPs, between basic and high-
performance processors, and from one processor to another within these categories.  
 
As a group, DSPs have good to excellent signal-processing-specific tool support, while GPPs 
typically have poor signal-processing-specific tool support.  The situation is similar in terms of 
third-party signal processing software components: DSP processors have poor to excellent 



support, depending on the processor, whereas GPPs typically have poor support (vendor supplied 
signal processing software, however, is improving for GPPs as vendors increasingly strive for 
competitive advantages, particularly in multimedia applications). For third-party software for 
tasks other than signal processing, DSP processors typically have poor support, whereas GPPs 
have poor to excellent support, depending on the specific processor.  
  
An important class of third-party software is real-time operating systems. A typical DSP may 
have a small handful of real-time operating systems available for it, usually these don’t include 
the most popular real-time operating systems.  In contrast, GPPs often have extensive support 
from a wide range of real-time operating systems including some of the most popular real-time 
operating systems such as VxWorks from Wind River Systems.  
 
Finally, DSP processor tools tend to have links to high-level signal processing tools like 
MATLAB. General-purpose processor tools typically lack these links, but instead have links to 
other kinds of high level tools, such a user interface builders. 
 
On-Chip Integration 
 
We use the phrase “on-chip integration” to refer to all of the elements on a chip besides the 
processor core itself.  A key consideration with on-chip integration is the appropriateness of the 
on-chip integration to the application at hand. If the elements on the chip suit the needs of the 
application well, they can be an enormous benefit to the system designer. They result in reduced 
cost, lower design complexity, reduced power consumption, reduced product size and weight, and 
even reduced electromagnetic interference because fewer printed circuit board traces will be 
required. 
 
In terms of on-chip integration, basic GPPs offer a wide range of on-chip integration options. 
Basic DSPs offer fewer on-chip integration options, but offer options that are better suited to the 
needs of specific signal processing applications. For example, a typical basic DSP would provide 
one or more synchronous serial ports, well suited for digital signal processing. These serial ports 
often include some intelligence, such as the ability to manage their own transfers to and from 
memory without intervention from the processor core. 
 
High-performance DSPs usually have fewer on-chip integration elements than their basic DSP 
cousins. Their on-chip integration level can be characterized as moderate, and the elements 
included are usually not specific to a particular application. This is because high-performance 
DSPs are less narrowly focused on specific applications and because these processors are not 
intended for highly cost-sensitive applications.  
 
High-performance embedded GPPs usually have moderate to extensive on-chip integration. This 
integration may be oriented to a specific application, but usually isn’t tailored to the needs of 
specific digital signal processing applications. High-performance CPUs usually limit their on-
chip integration to memory in the form of caches and memory management units to support PC 
operating systems, plus external bus interfaces. Because of their limited on-chip integration, using 
these processors in an embedded application usually requires significant external support and 
interface circuitry; this increases design complexity and can drive up cost and power 
consumption. 

Conclusions 



For applications with moderate signal processing requirements, basic DSPs and GPPs are often 
both viable candidates. As the signal processing requirements increase, it is more likely that a 
basic DSP processor will be necessary because at some point a basic GPP just won’t have the 
needed horsepower.  But even in the context of more moderate signal processing requirements, a 
basic DSP may be better suited in terms of energy efficiency, memory use efficiency, and on-chip 
integration. On the other hand, if the application has extensive functionality outside of signal 
processing tasks—things like user interfaces and communications protocols—then the basic GPP 
may be preferred because of its features, its efficiency in those types of tasks, and its generally 
superior development tools and support. 
 
Applications with heavy signal processing requirements will invariably require a high-
performance processor. But since high-performance GPPs often have signal processing 
performance equal to that of high performance DSPs, which one should you use?   
 
Since high-performance GPPs are competitive with high-performance DSPs in terms of speed and 
memory use, other factors become important in selecting and differentiating between the two. 
Primary among these other factors are on-chip integration and development support. In neither of 
these areas does either category of processor have a consistent advantage. In integration, most 
high-performance DSPs and high-performance GPPs have somewhat limited on-chip integration, 
so which class of processor has a better match for a particular application will vary widely from 
application to application and with the particular processors under consideration. In general, PC 
CPUs, with their minimal on-chip integration, are at a disadvantage in embedded applications. 
  
Though in general their tools are very good, signal-processing-specific development 
infrastructure is usually a weakness of high-performance GPPs used in signal processing 
applications. This is an area where high-performance DSP processors still hold a significant 
advantage, though vendors of high-performance GPPs and their tool vendors are making progress 
in signal-processing-oriented tool support. 
 
Finally, high-performance GPPs introduce a lack of execution time predictability compared to 
high-performance DSPs, which results from their use of dynamic features such as superscalar 
instruction execution. This timing variability can make it difficult to ensure real-time behavior in 
some situations, and can make it difficult to optimize software, which is often required in 
performance-hungry signal processing applications.  
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